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ABSTRACT

The research presented in this paper focuses on Head-Related Trans-
fer Function (HRTF) individualization using deep learning tech-
niques. HRTF individualization is paramount for accurate binaural
rendering, which is used in XR technologies, tools for the visually
impaired, and many other applications. The rising availability of
public HRTF data currently allows experimentation with different
input data formats and various computational models. Accordingly,
three research directions are investigated here: (1) extraction of pre-
dictors from user data; (2) unsupervised learning of HRTFs based
on autoencoder networks; and (3) synthesis of HRTFs from an-
thropometric data using deep multilayer perceptrons and principal
component analysis. While none of the aforementioned investiga-
tions has shown outstanding results to date, the knowledge acquired
throughout the development and troubleshooting phases highlights
areas of improvement which are expected to pave the way to more
accurate models for HRTF individualization.

Index Terms: Hardware—Communication hardware, interfaces
and storage—Signal processing systems—Digital signal process-
ing; Applied computing—Arts and humanities—Sound and music
computing—

1 INTRODUCTION

Virtual/augmented/mixed reality (XR) research has made substantial
progress over the last decades, and XR environments created using
binaural sound rendering technologies find applications in a wide
array of areas, ranging from travel aids for the visually impaired to
entertainment systems [3}25].

Binaural sound rendering techniques are based on the application
of a particular filter called Head-Related Transfer Function (HRTF),
which colors a sound according to its location in the virtual envi-
ronment. However, HRTFs derived from generic anthropometries
such as dummy heads often result in localization errors and limited
spatial perception [18]. In fact, while generic HRTFs may accept-
ably approximate the interaural cues used to perceive the horizontal
direction of a sound source, the monaural cues needed to discern
its vertical direction are highly dependent on the anthropometric
characteristics of the individual ear [1].

In order to provide the most realistic and immersive experience
possible, it is necessary for users to have their custom set of HRTFs
measured, which can prove quite impractical due to the need for ded-
icated facilities and the overall invasiveness of the procedure. Over
the past decades, several strategies have been devised in order to
avoid the burden of conducting strenuous acoustical measurements
with human subjects. In a recent review, Guezenoc and Seguier [S§]]
divide such alternative approaches into numerical simulation, an-
thropometrics-based, and perceptual feedback-based customization.

The first method consists in simulating the propagation of acous-
tic waves around the subject, using 3D scans; the most common
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Figure 1: Architecture proposed by Chen et al., with HRTF autoen-
coding and latent representation estimation from anthropometry with
a DNN. Solid arrows indicate the training process, dotted arrows in-
dicate usage, and the red dashed oval highlights the latent space.
Figure reproduced from [5].

simulation schemes include the Fast Multipole Accelerated Bound-
ary Element Method (FM-BEM) [9] and the Finite Difference Time
Domain (FDTD) method [26]. With the help of databases of publicly
available HRTFs and machine learning techniques, anthropometric
measurements can be used to choose, adapt, or estimate a subject’s
HRTF set. For instance, in 2010 Zeng et al. [30] implemented a
hybrid model based on Principal Component Analysis (PCA) and
multiple linear regression, which used anthropometric parameters
to select the most suitable HRTF set for a given user. Similarly,
user feedback on perceptual tests can be used to inform regression
models for tasks such as those listed above.

In more recent times, there has been an interest in solving these
tasks using deep learning techniques [[7]. In 2017, Yao et al. [29]] used
anthropometric measurements to select the most suitable HRTF sets
from a larger database. In their work, a dataset of user anthropometry
and fitness scores for each available HRTF is compiled — by means
of conducting perceptual tests with users — and neural networks for
each HRTF are trained to predict their suitability. Again in 2017,
Yamamoto and Igarashi [28]] trained a variational autoencoder (VAE)
on HRTF data, and devised a perceptual calibration procedure to
fine-tune the latent variable used as input by the generative part
of the model. In 2018, Lee and Kim [[15]] developed a double-
branched neural network that processes anthropometric data with a
multilayer perceptron (MLP) and edge-detected pictures of the ear
with convolutional layers, combining the outputs of the two into a
third network to estimate HRTF sets. Finally, in 2019, Chen et al. [5]]
trained an autoencoder to reconstruct HRTFs along the horizontal
plane, and subsequently used the resulting latent representations as
targets for a MLP which feeds on anthropometric data and azimuth
angle, allowing users to synthesize new HRTFs using the MLP and
decoder — this is shown in Fig.[T}
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Figure 2: Data structure, called HRTF patch, used as input to the
autoencoder by Yamamoto and Igarashi. Figure reproduced from [28].

Since there is not a clear consensus on what is the most effective
strategy for deep learning based HRTF individualization, this paper
investigates further methods — in particular using newly developed
deep learning algorithms and alternative data representations — and
expands on the topic by documenting the experiments conducted as
part of the research. Section [2]details the computational techniques
used in selected works from the literature as well as in the original
research carried out herein, with a particular focus on deep learning
methods. In Section[3] the applications and outcomes of the afore-
mentioned techniques are discussed, with the purpose of assessing
their effectiveness. Finally, closing remarks as well as pointers for
future research are stated in Section 4]

2 METHODS

This section presents some of the most relevant computational meth-
ods found in the relevant literature on HRTF individualization. The
aspects covered in the following subsections include the encoding
of generated HRTFs, the extraction and choice of viable predictors,
and the deep neural network (DNN) architectures adopted.

2.1 HRTF representation

A single HRTF is defined as the the far-field frequency response
of a given ear, measured from a point in the free field to a point in
the ear canal [[6]. An HRTF set is composed of the HRTFs of both
left and right ears, measured at a fixed distance from the center of
the head, and across several elevations and azimuths. According
to Kulkarni et al. [14f], HRTFs specified as minimum-phase FIR
filters have been empirically proved to be perceptually acceptable.
Thus, HRTFs can be stripped of the ITD information and stored as
real-valued log-magnitude responses.

While this is the preferred way of storing, exchanging, and using
HRTF sets, neural networks have different requirements that call
for ad-hoc formats. Notably, Yamamoto and Igarashi [28]] use dif-
ferent representations for the input and output of their autoencoder.
The input data format, which is dubbed HRTF patch, consists of
a 4-dimensional tensor of shape (5 x 5 x 128 x 4). The first two
dimensions describe the HRTF under investigation and its neighbors
along the elevation and azimuth directions, for a total of 25 HRTFs
in each given patch. The remaining ones describe the content of each
HRTF in the patch: the last dimension, also called channel, encodes
frequency power spectrum or time-domain signal for either left or
right ear, where 128 is their length. This data representation provides
a substantial amount of contextual information, which can be learnt
by 3D convolutional layers. The structure of the HRTF patch can
be seen in Fig.[2] The output of the autoencoder does not contain
any neighbor HRTF, but instead of encoding the frequency power
spectrum or time-domain information as a continuous signal, it uses
a quantized format where each sample can have one of 256 possible
discrete values that are then mapped to another dimension using
one-hot encoding. The continuous signals can be reconstructed by

taking the index of the value with highest magnitude and passing it
to a p-law algorithm. This strategy — which can be found in certain
WaveNet implementations [27] — makes sure to retain some of the
high-frequency details of the continuous signals, which are often
lost when reconstructing data with autoencoders.

In this paper we consider mappings where HRTFs sharing the
same azimuth or elevation are combined in a 2-dimensional image-
like representation with either elevation or azimuth along one axis
and frequency along the other; the color of each pixel represents the
log-magnitude of the spectrum. The structure expressed by adjacent
HRTFs could therefore be learnt using 2D convolutional layers. The
downside of combining data in this way is the reduction of available
data points to use for training.

Another possible format is a compact representation of individual
HRTFs consisting of their first N principal components. While
it has been observed that as little as 5 components are enough to
explain approximately 90% of the variance in the original HRTF
magnitude functions [[13]], the loadings of the PCA must be learned,
thus becoming an essential part of the representation.

2.2 User data extraction

A fundamental aspect of HRTF individualization is the kind of data
used to personalize the frequency response. Most often, acquiring
data about a subject is faster and less strenuous than collecting an
entire HRTF set, as well as having looser requirements in terms of
external conditions and tools. The kind of data that can be collected
comprises anthropometric measurements, 3D models, and perceptual
feedback.

The CIPIC dataset [2] released in 2001 sets a convention for an-
thropometric data collection and reporting, which has been adopted
by later datasets too [4]. Its format specifies 17 anthropometric
parameters for the head and torso, and 10 for each pinna. It has
the disadvantage of having loosely defined measurement points,
which translate into systematic biases which makes merging differ-
ent datasets particularly prone to errors. Moreover, anthropometric
features are only unique to each given subject and as such, may not
have enough predictive power to be used for the regression of several
HRTFs per subject. This shortcoming can be partially addressed by
introducing elevation-dependent anthropometric measurements as
predictors [[11L[23]], based on the length of segments spanning from
the ear canal entrance to each of the three contours outlined by the
helix and concha, and oriented according to a given elevation angle.

Another source of useful predictors for regression tasks can be
found in 3-dimensional representations of the subject. Recent HRTF
datasets include digital scans of subjects’ heads and/or pinnae [4}24]
stored as 3D models, which can be used for feature extraction. In
particular, 2-dimensional projections such as digital renderings or
depth maps can be conveniently processed in neural networks using
convolutional and pooling layers. As will be mentioned in the follow-
ing section, convolutional autoencoders can extract salient features
from images of the pinna, which can then be used as predictors.

Finally, perceptual feedback consists in letting a user evaluate and
rate the performance of a given HRTF set, and is most commonly
adopted in HRTF selection or adaptation tasks. Nevertheless, Ya-
mamoto and Igarashi use perceptual feedback to navigate the latent
space in order to synthesize suitable HRTFs for a given user [28].
It is worth noting how, while validating models based on anthropo-
metric data is quite trivial, models that use perceptual data require a
user study or the implementation of a virtual agent.

2.3 Autoencoder

Most conventional neural networks are used to predict a target y
from an input x, a task known as supervised learning. On the other
hand, autoencoders learn a compressed representation z of the input
data x called latent representation, which is then used to generate
a reconstructed version £. Thus, the purpose of autoencoders is



to extract useful features from the input data in an unsupervised
manner [7]. One such example can be seen back in Fig.[T} where an
autoencoder is used to derive a compact HRTF representation which
can then be used as the target of a prediction task [3].

An autoencoder usually consists of a feed-forward neural network,
in turn composed of two subnets: an encoder network f() and a
decoder network g() such that g(f(x)) = g(z) = £. Training an
autoencoder usually involves iteratively updating the weights and
biases of the two networks through backpropagation, in order to
minimize a cost function representing the mean squared error (MSE)
between x and X.

Over time, several variants of autoencoder have been developed.
Each variant extends the conventional autoencoder architecture by
promoting different properties of the latent space, thereby catering to
different tasks such as denoising, classification, or — as is the case
here — generative applications. Two common autoencoder-based
generative models are described below.

2.3.1 Variational autoencoder

A VAE is a probabilistic model where the encoder maps the proba-
bility distribution of a certain latent representation given a data point,
and the decoder outputs the probability distribution of the data, given
a point in the latent space. It is often desirable to model the latent
space prior distribution as an isotropic multivariate Gaussian; in
order to enforce this, the Kullback-Leibler divergence between the
aforementioned prior and the encoder is introduced.

This probabilistic framework proves useful when synthesizing
HRTFs, because it can learn causal factors of variations in the
data [12]). However, there exists no way of generating a data point
with specific characteristics, such as the HRTF at a given azimuth
and elevation angles. While points in the latent space are likely to
generate plausible new data, one can only sample randomly. The
class of autoencoders described below aims at addressing this short-
coming.

2.3.2 Conditional variational autoencoder

Conditional variational autoencoders (CVAEs) are an extension of
VAEs, where an input data label ¢ modulates the prior distribution of
the latent variables that generate the output [21]|. Thus, the encoding
process is conditioned by c instead of the data content alone. Further-
more, the decoder too is conditioned by the label. The influence of ¢
is incorporated into the VAE structure by means of concatenating
its value to the input data x before feeding it into the encoder, as
well as to the latent variables z before feeding them into the decoder.
Yamamoto and Igarashi use a customized deep CVAE where
labels consisting of a subject ID and a spatial orientation, both pro-
vided as one-hot encoded vectors, are used to condition each layer
of the encoder and decoder.

3 EXPERIMENTS AND RESULTS

The research conducted as part of this work can be grouped into
three main threads: (1) extraction of user data to be used as predictor;
(2) unsupervised learning of HRTF data; and (3) synthesis of HRTFs
from anthropometric data using deep multilayer perceptrons and
principal component analysis. The following subsections elaborate
on the aforementioned topics.

The recent release of the HUTUBS HRTF database [4], com-
prising 93 different human subjects, prompted its adoption for the
experiments described herein. This dataset is remarkably exten-
sive compared to previously released ones since it features both
acoustically measured and numerically simulated HRTFs, as well as
anthropometric measurements and 3D models of the head — these
latter available for 55 subjects only.

Figure 3: Pinna depth maps for a given subject, over a grid of different
azimuth and elevation tilts.

3.1 Autoencoding ear images

The shortcomings of anthropometric measurements mentioned in
Section[2.2] together with their limited predictive power highlighted
in previous works [17[23]], prompted the exploration of alternative
features to be used in HRTF prediction tasks. In the literature, fea-
tures from pinna images have been extracted using convolutional neu-
ral networks for the purpose of biometrics-based identification [20].
Thus, it was thought to employ convolutional layers in a VAE in
order to derive salient features from its compact representation in an
unsupervised manner.

Digital renderings of the z-buffer (also known as depth maps) of
the 3D head models in the HUTUBS dataset [4]] have been extracted,
using the pyrender and trimesh packages for Python, and con-
verted into 8-bit grayscale images. For each of the 55 unique head
meshes, the point of view has been placed on either side of the head,
so as to show each pinna separately.

In order to increase the amount of images used for training, several
data augmentation techniques have been adopted. Firstly, variations
of the point of view have been introduced, by tilting the camera along
both elevation and azimuth. Secondly, slight vertical and horizontal
offsets have also been applied. Lastly, each of the images thus gen-
erated has been duplicated and processed with sparse, discrete noise.
A tool for selecting subsets based on the augmentation parameters
has been developed, allowing the size of the dataset used for training
to be anywhere from a few to well over a million pictures. Figure[3]
shows the azimuth and elevation variations for a given subject.

The model used in these experiments is a VAE. The architecture
is similar to the one described in Section [2.3.1] except it uses 2D
convolutional layers. Within the encoder part, several dimensionality
reduction techniques have been tested, such as max pooling layers or
strides in the convolutional kernels, with no discernible difference
in performance. Similarly, the decoder part has been originally
implemented using transpose convolution with strides, which caused
noticeable artifacts in the output images. In order to address this,
a combination of upsampling layers and regular convolution has
instead been used [19]. The hyperparameters of the architecture
included the number of stacked layers, the number of convolutional
filters for each layer, the number of latent dimensions, and batch
normalization.
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Figure 4: True and reconstructed pinna depth maps, using a convolu-
tional VAE and data from only the frontal point of view.

Multiple experiments have been conducted, using different combi-
nations of input data and model hyperparameters. The main criterion
for evaluating the model effectiveness was the quality of the recon-
struction. Indeed, images that have been faithfully reconstructed are
indicative of a meaningful compact representation that can effec-
tively encode the physical characteristics of the pinnae; conversely,
ear pictures that fail to be distinguishable are not satisfactory. Fur-
thermore, it was expected that latent variables show some degree
of correlation with the anthropometric measurements related to the
pinna, since they also describe factors of variance across pinnae.

The experiments have generally shown how, despite the elevation-
and azimuth-dependent data augmentations exposing or hiding dif-
ferent parts of the pinnae thereby affecting their appearance, most
of the variance in the data occurs in the surrounding area of the
head, which is of no interest. This results in latent variables en-
coding mostly features related to the gradient in the background
areas, while pinnae appear blurry and indistinguishable. Using data
rendered from the same point of view and only augmenting the data
using noise seems to alleviate the problem, as seen in the recon-
struction in Fig. El However, the decrease in available training data
negatively affects generalization, causing artefacts when sampling
the latent space. Furthermore, the compact representation of the
data points exhibits little to no correlation with the anthropometric
measurements.

3.2 Autoencoding HRTFs

Synthesizing HRTFs from a set of parameters is a fundamental as-
pect of the individualization task. Since it is not yet fully understood
what the optimal parameters are, it might be interesting to let a
neural network derive its own by means of autoencoding the HRTFs.
These parameters can then be either the target of another prediction
task [5] or adjusted through perceptual feedback from the user [28].
Therefore, several VAE/CVAE models have been developed and
trained, using different data layouts and architectures.

The architecture of the networks employed in this series of experi-
ments is heavily dependent on the data formats, which are described
in Section@ In particular, given different dimensionalities, the
following formats have been tested:

* 3D: HRTF patch processed using 3D convolutional layers,
where only the middle HRTF is decoded;

* 2D: group of HRTFs (elevation X frequency, azimuth X
frequency) or HRTF bins (elevation x azimuth), processed
using 2D convolutional layers;

* 1D: single HRTF, processed using either dense or 1D convolu-
tional layers.

In the first case, the reconstruction target of the autoencoder
is similar to the one-hot encoded output representation used by
Yamamoto and Igarashi [28]. In the last case, a layer topology
reminiscent of ResNet [10] has also been tested. This variant allows
for deeper networks that do not suffer from vanishing gradient during
training. For each scenario, a different number of convolutional
filters, convolutional layers, and latent dimensions has been tried.

Just as for the pinna images case, the main goals here were a
satisfactory reconstruction of the input and a meaningful latent
space mapping. While the former can be assessed using quanti-
tative metrics such as the spectral distortion (SD) between true and
reconstructed HRTF, the latter is a more elusive property which can
be inferred from the correlation with known HRTF predictors such
as pinna anthropometric data, or azimuth and elevation angles.

The experiments conducted so far show mediocre reconstruction
performances and little correlation with the aforementioned anthro-
pometric variables, highlighting the need for more sophisticated
models or more effective data representations. Indeed, reconstructed
2D and 1D representations appear blurry and lacking sharpness
on the distinctive notches and peaks of the HRTFs. For the 1D
case, which can be observed in Fig. |§|, the average SD on the test
set is 5.2 dB. Similarly, the one-hot output encoding used in the
3D representation experiments results in a mostly erratic behavior,
most likely because without the Gaussian distribution constructed
along the quantized levels dimension [28]], the reconstruction task
proves too difficult. The sharpest reconstructions are related to the
2D elevation-frequency representation using convolutional layers,
which may suggest how contextual data can aid the training process;
however, the reduced amount of data points negatively impacts the
generalization capabilities of the model.

3.3 PCA-based HRTF prediction

This last set of experiments is based on the notion that autoencoders
perform a similar task as PCA, while also learning non-linear feature
spaces [|16]. Accordingly we found that, with as little as 20 principal
components, it is possible to reconstruct HRTFs with an average
SD of 1.7 dB — see Fig. |§|(left). Moreover, some of these princi-
pal components show a high degree of correlation with elevation
and azimuth angles. The models developed and evaluated here are
therefore aimed at predicting these principal components from user
data, and are inspired by the work of Chen et al. S]], who focused
on predicting HRTFs over the horizontal plane only.

The type of data used by the models as predictors were either
anthropometric measurements or the pinna depth maps used in Sec-
tion[3.1] Since the aforementioned features do not change depending
on the HRTF direction, the elevation and azimuth angles were also
introduced as predictors, and HRTFs across the entire range of both
elevation and azimuth were used. In order to limit the amount of
features introduced by the depth maps, PCA has been performed
on their pixels, and the first few principal components were used
as input variables. Due to the nature of the input and output data,
only architectures with dense layers have been tested. The main
hyperparameters were: number of principal components for HRTF
representation, number of principal components for depth map rep-
resentation, and number and size of hidden layers.

The setup used for these experiments implemented a potential
complete HRTF individualization procedure, where user data is
fed as input, a DNN composed of fully-connected layers derives
principal components for the HRTF, and the PCA loadings learned
from a training set are used to derive a new HRTF. Thus, the entire
system has been embedded in a 10-fold validation routine where,
at each iteration, a training set comprising 13 of the data was used
to fit the neural network and calculate the PCA loadings, whereas a
smaller test set with the remaining 1—10 was used for validation. The
metric observed throughout the process was the SD between true
and reconstructed HRTF, calculated between 3 and 16 kHz.

The result of using only anthropometric measurements as predic-
tors and a full HRTF range is an average SD of 4.5 dB and 4.7 dB
for training and test sets respectively. While this is indeed promis-
ing, upon close inspection most generated HRTFs look similar, and
while the general trend of the spectrum is correct, the sharp spec-
tral features are not clearly distinguishable. When trying to derive
principal components from pinna depth maps, a large number of
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Figure 5: True (blue) and reconstructed (orange) HRTFs from different test subjects at different azimuth and elevation angles, using a convolutional

VAE with residual layers.
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Figure 6: Box-and-whiskers plots for HRTF reconstruction using 20
principal components (left) and HRTF synthesis from anthropometric
data and 40 pinna depth map principal components using a DNN
(right), across 10 validation folds.

principal components proves necessary for a satisfactory reconstruc-
tion, which is always worse in the test set. Thus, features obtained
from the principal components fail at generalizing the character-
istics of the pinna, and result in poorer performances with more
severe overfitting. A model combining both predictors has also been
tested, peaking at 4.1 dB and 4.7 dB SD for training and test sets
respectively as shown in Fig. [6] (right).

4 CONCLUSIONS

This paper presented some of the most promising advances in HRTF
individualization, introduced the deep learning techniques associated
with them, and detailed the results of further experiments based
on the underlying knowledge base. Our contribution focused in
particular on (1) extraction of meaningful predictors from user data;
(2) unsupervised learning of HRTF data; and (3) synthesis of HRTFs
from anthropometry.

While none of the above three threads of investigation has shown
outstanding results, the knowledge acquired throughout the develop-
ment and troubleshooting phases highlighted areas of improvement

which are expected to pave the way to more accurate models for
HRTF prediction from user data. No major difference with network
size or hyperparameter tuning has been observed, although several
setups proved more effective than others. In particular, providing a
larger amount of data during the training process positively affects
generalization, and so do deeper networks with batch normalization
layers. It is also worth noting how SD alone is not a solid measure
of perceptual fitness, and user tests in a XR environment might be
necessary to reliably assess the performances of generated HRTF
sets.

There exist several possible improvements for each of the three
directions. Autoencoding pinna images could benefit from more
sophisticated models such as those using ResNet or Inception convo-
lutional layers. Autoencoding HRTFs in multiple dimensions may
prove more useful when performed with a CVAE, where elevation
and azimuth directions are fed either as two scalars or as one-hot
encoded vectors. Moreover, in order to improve the sharpness of the
most salient HRTF spectral features, the probabilistic one-hot encod-
ing output representation introduced by Yamamoto and Igarashi 28]
could be adopted. Finally, all deep models presented above would
certainly benefit from having access to larger datasets with more
subjects. This may be addressed by merging multiple datasets [22],
which would require a normalization step to ensure that biases —
such as those caused by different measurement setups — are not
introduced into the learning process.

The code for the experiments, along with additional results, can
be found on GitHulﬂ in the form of Jupyter notebooks for Python.
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