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ABSTRACT

The rising availability of public head-related transfer func-

tion (HRTF) data, measured on hundreds of different individ-

uals, offers a user the possibility to select the best matching

non-individual HRTF from a wide catalogue. To this end, re-

ducing the number of alternatives to a small subset of candi-

date HRTFs is the first step towards an efficient selection pro-

cess. In this article a novel HRTF subset selection algorithm

based on auditory-model vertical localization predictions and

a greedy heuristic is outlined, designed to identify a repre-

sentative HRTF subset from a catalogue including the three

biggest public datasets currently available (373 HRTFs over-

all). The so-resulting subset (6 HRTFs) is then evaluated on a

fourth independent dataset. Auditory model predictions show

that for over 95% of the subjects of this dataset there exists at

least one HRTF out of the representative subset scoring mini-

mal vertical localization error deviations compared to the best

available non-individual HRTF out of the catalogue.

Index Terms— Auditory model, binaural, HRTF selec-

tion, sound localization

1. INTRODUCTION

Head-related transfer functions (HRTFs) summarize the

direction-dependent acoustic filtering that a free-field sound

undergoes due to the head, torso, and pinna. While a pair of

HRTFs, one for each ear, can be used to synthesize one or

more virtual sounds coming from specific directions, its per-

ception by a particular listener in a particular binaural sound

reproduction setup can result in different levels of localiza-

tion accuracy and spatial immersion. Beside the availability

of technological supports such as − to name but a handful −
individual headphone equalization, dynamic head tracking,

and artificial reverberation [1], one desirable element in any

binaural system is the application of individual HRTFs mea-

sured on the listener. It is known that generic non-individual
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HRTFs compared to individual ones are prone to increased

localization error and front/back confusion [2].

While it is nowadays possible to calculate the individual

HRTF by numerical simulation from a 3D geometry of the

head [3], perceptual studies that validate numerically simu-

lated HRTFs against measured ones are rare [4]. Acoustical

measurements in controlled environments are therefore still

required for obtaining ground-truth individual HRTFs, with

high human and technical demands. Providentially, the rising

availability of public HRTF data measured on several differ-

ent human subjects makes it possible in theory for a listener

to choose the best fitting HRTF out of hundreds of candi-

dates. This solution, known as HRTF selection, can be car-

ried out in its simplest form − wherein HRTFs are selected

without any adaptation step − either automatically by means

of anthropometry-based matching algorithms [5] or by direct

intervention of the listener through perceptual quality evalu-

ation procedures [6, 7]. In the latter case, given that the size

of the starting dataset in terms of number of HRTF sets might

be high, requiring extensive time for subjective evaluation, it

is necessary to reduce it down to a few candidate HRTFs.

Previous work [7] reports reducing a 46-HRTF dataset

down to a 7-HRTF subset based on qualitative ratings of

median- and horizontal-plane non-individual HRTFs. That

study required the time and effort of 45 individuals to deter-

mine the perceptually optimized subset. Instead, the present

study proposes the use of systematic localization predictions

by an auditory model combined with a greedy heuristic to

identify a representative subset of candidate best-matching

HRTFs from a wide catalogue. Indeed, recent efforts in audi-

tory modeling allow to simulate the localization performance

of a measured subject with virtual sounds filtered with indi-

vidual or non-individual HRTFs [8]. This means that costly

and lengthy localization tasks can be approximated using

auditory models, making it possible to compute thousands of

localization performances in negligible time. Similar to previ-

ous studies on HRTF individualization, this study focuses on

error metrics for sources on the median plane, which is known

to be the most critical region of error increase when moving

from individual to non-individual HRTF rendering [2].



2. METHODS

2.1. The data

Several public HRTF datasets collecting acoustical measure-

ments on tens of human listeners are available online. Most

of these are stored in a common HRTF format known as

Spatially Oriented Format for Acoustics (SOFA).1 However,

given the peculiarities of each HRTF dataset, attention must

be devoted to merging them while minimizing the dataset-

related bias. While some variables either are compensated for

in the spectral analysis step of the auditory modeling process

(e.g. filter length and sampling frequency, see next subsec-

tion) or have minimal impact on the HRTF measurement (e.g.

source distance above 1m [9]), differences in the set of spatial

measurement directions require special care. Even though

spatial interpolation methods may be applied [10], they carry

the drawback of introducing error. A simpler and more vi-

able alternative lies in the choice of a subset of common

median-plane measurement directions for different datasets.

Accordingly, this study is based on three HRTF datasets

(ARI2 [11], RIEC [12], and HUTUBS [13]) that share 23
common median-plane directions in the [−30, 210]◦ elevation

range (according to the vertical polar coordinate system), with

a constant step of 10◦ and excluding angles 90◦ and 110◦.

Following the exclusion of documented dummy-head HRTFs

and of a couple of repeated measurements of the same indi-

viduals, a total of 373 unique human HRTFs are left,3 forming

the HRTF catalogue under study. A fourth dataset (ITA [14],

48 HRTFs) that also shares the same median-plane directions

is considered for the final independent evaluation step.

2.2. The auditory model

The auditory model used herein is the sagittal-plane localiza-

tion model by Baumgartner et al. [8] included in the Auditory

Modeling Toolbox.4 It is a probabilistic functional model that

follows a template-based approach, i.e., assumes that human

listeners create an internal template of their own HRTF as the

result of a learning process, according to which spectral fea-

tures are mapped to distinct polar angles for a given sagit-

tal plane. When the listener receives an incoming broadband

sound, its representation is compared to the internal template;

the more similar, the larger the probability of perceiving the

sound as coming from the corresponding direction. In the

model, the incoming sound is obtained by convolution of a

reference stimulus (here, an impulse) and a target HRTF.

The model receives its target and template inputs in the

form of directional transfer functions (DTF), i.e., HRTFs with

1http://www.sofaconventions.org
2ARI data includes all the hrtf b/c files available as of May 2019.
3This study relies on the strong assumption that no two HRTFs from dif-

ferent datasets belong to the same individual, which is reasonable considering

that the datasets were collected in different cities.
4http://amtoolbox.sourceforge.net

the common, direction-independent component across all di-

rections removed as described by Majdak et al. [11]. Then,

the target sound is created by convolving the target DTF with

the reference stimulus. In order to approximate the spec-

tral analysis carried out by the auditory periphery, the target

sound and template are filtered using a gammatone filterbank.

Relevant spectral cues are then extracted by positive spectral

gradient extraction, resulting in target and template spectral

gradient profiles. The comparison process between the two

is carried out separately for the left and right channels along

the polar response angle (an angle vector spanning the en-

tire sagittal plane) by means of a L1-norm distance metric,

followed by a mapping to similarity indices accounting for

listener-specific sensitivity. After combining the two monau-

ral vectors of similarity indices by weighting them with an

azimuth-dependent sigmoid function, the resulting vector un-

dergoes a circular convolution with a circular normal distribu-

tion that scatters the similarity indices along the polar dimen-

sion, simulating the mapping to a motor response in the act

of pointing to a target sound. Finally, the vector of similarity

indices is scaled such that its sum across all response angles

equals one, yielding a probability mass vector (PMV) repre-

senting the response probability along the polar dimension.

Focusing now on the median sagittal plane, the psychoa-

coustic performance metrics used to compare a template and

a target HRTF are those known as quadrant error rate (QE)

and root mean square local polar error (PE) [15]. For each

target angle, QE is defined as the proportion of polar errors

larger than 90◦ in absolute value, while PE is the root mean

square average of polar errors that are less than 90◦. The

two errors are then averaged across all target angles to yield

single-valued QE and PE metrics for every pair of template

and target HRTFs. Formally, letting Aj be the set of angles

corresponding to local response angles θi ∈ R to a target

angle ϑj ∈ T , Aj = {θi ∈ R : |θi − ϑj |mod 180◦ < 90◦},
these errors can be computed from PMVs pj [θi] as follows:

QE =
1

|T |

∑

ϑj∈T

∑

θi∈R\Aj

pj [θi], (1)

PE =
1

|T |

∑

ϑj∈T

√

√

√

√

∑

θi∈Aj
(θi − ϑj)2pj [θi]

∑

θi∈Aj
pj [θi]

. (2)

In our simulations all model parameters are set to their

default values, including a fixed sensitivity value of 0.7. This

value coincides with the mean sensitivity of the virtual lis-

tener pool used in Baumgartner et al. [8] to minimize the er-

ror between actual and predicted localization performances.

Performance metrics are calculated for every possible pair of

N = 373 template and target HRTFs from our catalogue,

yielding the two N ×N (for a total of 139129 comparisons)

matrices Q (for QE) and P (for PE) where rows represent

template HRTFs, columns represent target HRTFs, and indi-

vidual HRTF predictions appear on the diagonal.



2.3. The subsetting algorithm

The goal is to identify a small subset of N HRTFs that fit the

large majority of the human sample represented in the cata-

logue. Given the absence of an absolute criterion for deter-

mining whether an HRTF fits a listener based on QE and PE

alone, we use a threshold based on a maximum error toler-

ance heuristic. In particular, a target HRTF fits a virtual lis-

tener (i.e., a template HRTF) only when both QE and PE are

no greater than the minimum available non-individual QE/PE

for the virtual listener times the constant tolerance

tE =
1

N − 1

∑

i

P
j
10
(Eij)

min
j

Eij

, i 6= j, (3)

where E ∈ {P ,Q}, P j
10

represents the 10th percentile of

the error along the target dimension, and the −1 in the de-

nominator accounts for the individual HRTF entry. By con-

servatively selecting the average ratio of the 10th percentile

to the minimum value of the error, roughly just 10% of the

non-individual error values are considered acceptable. After

setting the matrices diagonals to infinity (in order not to con-

sider individual HRTFs), the fitness matrix F is computed as

Fij =
∧

E∈{P ,Q}

Eij ≤ tE ∗min
k

Eik. (4)

In other words, the j-th target HRTF fits the i-th template

HRTF (and Fij = 1) if and only if both QE and PE fall within

the relative tolerances tQ and tP ; Fij = 0 otherwise.

Our question now is how to select a minimum subset of

columns of F such that all rows are covered by at least one

positive entry. This is an alternative formulation of the set

cover problem, a very well-known question in operations re-

search that looks for the smallest collection of subsets of a

universe whose union covers the universe itself. It is a NP-

complete problem, implying that there exists no deterministic

polynomial-time solution. However, several polynomial-time

approximation algorithms are available, including a classical

greedy heuristic that iteratively picks the subset covering the

largest portion of still uncovered universe items [16]. Here,

the universe is U = {1, . . . , N} and the collection of subsets

is C = {C1, . . . , CN} with Cj = argi Fij = 1.

Algorithm Greedy subset selection

Require: U =
⋃

Cj∈C

Cj

S ← ∅, V ← U

while |V | > 0.1 |U | do

Choose Cj ∈ C \ S that maximizes |Cj ∩ V |
V ← V \ Cj

S ← S ∪ {Cj}
end while

return S

Fig. 1. Polar error metrics (left: QE, right: PE) of in-

dividual (ind), best non-individual (min), and average non-

individual (avg) target HRTFs for virtual listeners in the cata-

logue grouped by dataset.

The algorithm is outlined above and differs from its origi-

nal formulation in that the loop terminates as soon as the sub-

set selection covers 90% of the universe (not the whole of it).

This choice is due to the fact that, during its last iterations, the

algorithm might select subsets that cover just a few rows and

therefore be little representative of the universe.

2.4. Validation metrics

The L selected target HRTFs, whose corresponding indices

j1, . . . , jL ∈ U appear in the selected subset of columns

S = {Cj1 , . . . , CjL}, are finally evaluated on the indepen-

dent set of M = 48 template HRTFs included in the ITA

dataset by comparison with four alternative subset selection

methods based on choosing (1) the most fitting target HRTFs,

corresponding to the L columns of F with highest sum; (2)

the lowest QE target HRTFs, i.e. the L columns of Q with

lowest average value; (3) the lowest PE target HRTFs, i.e. the

L columns of P with lowest average value; (4) a random sub-

set of L target HRTFs. Performance metrics are calculated as

in Section 2.2 against all N target HRTFs from the catalogue,

yielding the two M × N (for a total of 17904 comparisons)

matrices Qval (for QE) and P val (for PE). The fitness ma-

trix F val is then computed from Qval and P val as in Eq. (4).

Given one of the five selection methods to be compared (with

selected HRTF indices j1, . . . , jL), the proportion of covered

virtual listeners from the ITA dataset serves as the final score

S =

∑

i

∨

j∈{j1,...,jL} F
val
ij

M
∗ 100% (5)

3. RESULTS

Figure 1 reports the distribution of QE and PE for individ-

ual and non-individual HRTF conditions (minimum and av-

erage error by template HRTF) broken down by catalogue

dataset. Visual inspection suffices for detecting the expected

advantage in using individual HRTFs; indeed, in all cases

but a few the best non-individual HRTF (i.e., the one giving



Table 1. HRTF selection by the greedy algorithm and four

other methods. Legend: A = ARI, H = HUTUBS, R = RIEC.
Selection method Selected HRTFs Score

Greedy algorithm A62, A129, A789, H23, H26, R8 95.8%

Most fitting A32, A129, A137, A828, R32, R55 79.2%

Lowest QE A66, A129, A137, A229, A251, A828 70.8%

Lowest PE A52, A129, A789, R32, R69, R76 81.2%

Random (average) (108 random subsets) 36.8%

Fig. 2. Polar error metrics (left: QE, right: PE) of individ-

ual (ind), best non-individual (min), best selected (sel), and

average non-individual (avg) target HRTFs for ITA listeners.

minimum error) scores higher error values than the individ-

ual one. On the other hand, one-way analyses of variance5

with dataset as between-subjects factor and each of the error

conditions as dependent variable reveal that, at the α = .05
level, the dataset effect is statistically significant (F (2, 372) ∈
[10.92, 35.61], p < .001) except for the individual PE condi-

tion (F (2, 372) = 1.43, p < .24). This effect might be re-

lated to different demographics between the populations rep-

resented in the datasets.

The proposed algorithm selects L = 6 target HRTFs,

covering 92% of the virtual listeners in the HRTF catalogue.

These HRTFs are listed in Table 1 alongside with those cho-

sen by the four alternative methods. The subset selected by

our algorithm achieves the highest score on the validation

dataset among all, S = 95.8% − meaning that only 2 vir-

tual ITA listeners out of 48 do not have a low-error HRTF

in the subset. Interestingly, none of the 108 random subset

generations (out of a total of
(

N
L

)

≈ 3.6 ∗ 1012 possible sub-

sets) could achieve a higher score. Another interesting result

is that for each of the six selected target HRTFs there exists

at least one virtual listener in the ITA dataset covered by that

HRTF only: this suggests the high degree of orthogonality of

the HRTF subset.

Figure 2 reports the distribution of QE and PE for indi-

vidual, best non-individual, best selected, and average non-

individual target HRTFs for ITA virtual listeners. Notice that

the best among the six selected HRTFs scores errors that are

extremely close to the overall best non-individual HRTF, with

an average difference of 1.95% in QE and 1.06◦ in PE.

It has to be acknowledged that the assumptions underlying

5Homogeneity of variance was verified using Levene’s test.

Table 2. Most fitting target HRTFs among 46 LISTEN sub-

jects, according to the subjective test in [7] and to the pro-

posed fitness metric.
Subjective test

HRTF BE BF BQ AZ BN AR BL AH AV

No. of subjects 16 16 16 15 14 13 13 12 12

Fitness metric

HRTF AR BQ AZ BF BR BT BC BE BN

No. of subjects 17 14 10 8 8 8 7 7 7

the used ad-hoc metrics do not guarantee that the hypotheti-

cal listeners in the ITA dataset would be perceptually satisfied

with the best among the six selected HRTFs. In order to par-

tially address this limitation, the F matrix for the 46 LISTEN

dataset [17] HRTFs used in [7] was computed (considering

all available median-plane angles, as in the previous study).6

Interestingly, as reported in Table 2, six out of the top nine

most fitting target HRTFs according to our metric (i.e. the 9
columns of F with highest sum) coincide with six out of the

top nine most selected (i.e. rated as “excellent”) HRTFs in the

subjective test. Considering that the subjective test differed in

that it also included horizontal localization predictions, this

result suggests the reliability of the used auditory model in

giving localization predictions as well as the relevance of ver-

tical localization in spatial quality perception. A truly subjec-

tive test with the proposed subsetting algorithm is planned as

future work.

4. CONCLUSIONS

This study suggest that a large HRTF catalogue can be effi-

ciently reduced by two orders of magnitude while preserving

at least one HRTF fitting the very large majority of a pool of

listeners in terms of localization error in the median plane.

Auditory models can act as efficient tools for HRTF evalua-

tion, allowing large-scale localization data analyses with little

computational resources. To the best of the author’s knowl-

edge, no other study to date has offered evaluations of HRTFs

measured on such a high number of different individuals.

This study focused on vertical localization accuracy.

While horizontal localization accuracy− that mainly relies on

interaural time differences (ITDs) − is of equal importance,

when presenting binaural sounds it is good practice not to

directly use non-individual ITDs yet couple minimum-phase

non-individual HRTFs with an individual anthropometric ITD

model [19]. Still, future work in HRTF subsetting/selection

might consider the inclusion of models for horizontal lo-

calization [20], sound externalization [21], distance percep-

tion [22], and ultimately other key perceptual attributes that

go beyond the basic issue of localization such as coloration,

immersion, and realism [23].

6Correspondence between LISTEN IDs and publication IDs was deter-

mined thanks to cross-referencing available in [18].
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