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ABSTRACT

This paper makes use of a new dataset of Head-Related

Transfer Functions (HRTFs) containing high resolution

median-plane acoustical measurements of a KEMAR man-

nequin with 20 different left pinna models as well as 3D

scans of the same pinna models. This allows for an in-

vestigation of the relationship between 3D ear features and

the first pinna notch present in the HRTFs, with the final

aim of developing an accurate and handy procedure for

predicting the individual HRTF from non-acoustical mea-

surements. We propose a method that takes the 3D pinna

mesh and generates a dataset of depth maps of the pinna

viewed from various median-plane elevation angles, each

having an associated pinna notch frequency value as iden-

tified in the HRTF measurements. A multiple linear re-

gression model is then fit to the depth maps, aiming to pre-

dict the corresponding first pinna notch. The results of the

regression model show moderate improvement to similar

previous work built on global and elevation-dependent an-

thropometric pinna features extracted from 2D images.

1. INTRODUCTION

Head-Related Transfer Functions (HRTFs) are essential

when it comes to providing a spatial listening experience

over headphones. They are the filters that describe the

acoustic effects of the human head and are highly depen-

dent on the direction of the incoming sound source relative

to each ear. In particular, the pinna plays a major role in

determining the spectral information contained in HRTFs

which proves to be a critical cue for spatial localization,

especially when it comes to identifying the elevation of a

sound source [1]. While the major mechanisms for sound

localization on the horizontal plane are the interaural dif-

ferences [2], such cues have a low impact in the median
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plane, giving the HRTF and in particular the pinna compo-

nent (known as PRTF – Pinna-Related Transfer Function)

particular importance for spatial localization. The contri-

bution of the pinna is also relevant off the median plane,

as variations in azimuth up to 30 degrees from the median

plane cause limited spectral changes in the PRTF [3].

Since the anthropometry of the pinna is unique to individ-

uals, it implies that HRTFs are also unique to each individ-

ual. Indeed, the use of non-individual HRTFs in binaural

sound rendering is known to produce sound localization

errors such as wrong elevation perception, confusion be-

tween front and back sources, or even the feeling that the

sound comes from inside the head [4]. Within such con-

text, customizing a generic HRTF model onto a user based

on individual morphological data is a particularly attrac-

tive alternative to time- and resource-consuming acoustical

measurements.

A number of previous work suggest a relationship be-

tween pinna anthropometry and certain HRTF features [5,

6], particularly spectral notches, which are believed to be

caused by reflections of the incoming sound inside the

pinna [7]. The first (lowest-frequency) pinna notch, known

in the literature as N1, has long been known as the respon-

sible cue for increasing frontal elevation [8]. Encourag-

ing results were found when trying to predict the center

frequency of N1, starting from both global and elevation-

dependent anthropometric pinna measurements [9, 10].

The present work expands on these results, aiming to

make use of a new dataset of HRTFs which contains high-

resolution acoustical measurements of a KEMAR manne-

quin equipped with 20 different artificial pinnae on its left

channel in the frontal median plane. The dataset comes

together with the 3D scans of the 20 pinna models, which

allow prediction of the N1 frequency estimated from the

measured HRTF based on a regression model built on ele-

vation-dependent depth maps of the pinnae. The remainder

of the paper is organized as follows. Section 2 describes

the methods for the acquisition of HRTFs and 3D models,

post-processing and feature extraction, and the regression

model, whose results are reported and discussed in Sec-

tion 3. Section 4 concludes the paper.
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Figure 1. HRTF measurement setup and environment.

2. METHODS

2.1 Dataset

The dataset considered for analysis is an unreleased ver-

sion of the Viking HRTF dataset 1 [11] where a focus on

extra median-plane measurements has been set. Similarly

to [11], an automatic, custom made HRTF measurement

system was used. As can be seen in Fig. 1, the system con-

sists of a KEMAR mannequin (45BB-4 configuration) with

interchangeable pinnae and a Genelec 8020CPM-6 loud-

speaker placed at a fixed distance of 1 m from the center of

the mannequin’s head, which adjusts for elevation via an

L-shaped rotating arm.

As opposed to the Viking HRTF dataset which was mea-

sured inside a relatively silent yet standard room, the new

measurements were carried out in the anechoic chamber

recently installed at the University of Iceland, during the

month of November 2019. The chamber has a size of

5.2 × 4.3 × 3.9 m (LWH), and the mannequin was placed

roughly in the center of it. Based on ISO 3745 and ISO

26101, the anechoic free field in the chamber has been cer-

tified (as of September 2019) compliant for measurements

within an area equivalent to a distance of approximately

0.2 m from wedge tips on the walls, ceiling and floor in the

frequency range from 200 Hz to 10 kHz.

A total of 20 different custom-made pinnae, shown in

Fig. 2, were used in turn as the left ear of the mannequin,

while the the right ear was always kept the same: a stan-

1 https://itsadive.create.aau.dk/index.php/viking-hrtf/

Figure 2. Custom-made pinnae used for the HRTF mea-

surements.

dard large KEMAR pinna (35 Shore-OO hardness). The

custom-made pinnae are labeled in alphabetical order as

subjects A to S, plus the KEMAR replica. For further in-

formation on the pinna sample and casting procedure, con-

sult [11]. The dataset also considers additional cases, nec-

essary either for facilitating post-processing or for quality

checking the measurements. In particular, subject Z is a

case where no pinna is mounted on the left side and the

cavity is filled with a silicone baffle of the same material,

used in order to isolate torso effects of the KEMAR man-

nequin. A number of measurements with standard KE-

MAR pinnae of different sizes and hardnesses were also

carried out, which can be used to verify results of previous

work [12].

The logarithmic sweep method was adopted for recording

the acoustical responses [13]. The duration of the sweep

was 0.9 s, spanning a frequency interval between 20 Hz

and 20 kHz at a sampling rate of 48 kHz. The average

SPL level at the left ear with the source directly above the

mannequin was 90 dB SPL at 1 kHz. For each left pinna,

sweep response measurements were recorded at 1◦ steps

from −80◦ to +90◦ elevation in the frontal half of the me-

dian plane (azimuth = 0◦), totaling 3420 sweep response

measurements. Positive/negative elevations correspond to

directions above/below the horizontal plane, respectively.

2.2 HRIR determination

In order to retrieve the Head-Related Impulse Response

(HRIR) and subsequently the HRTF from the measured

sweep responses a post-processing script was developed.

The onset of the sweep response was determined by means

of evaluating the cross-correlation function, Ψ [n], of the

recorded sweep response and the input sweep signal. The

lag ni giving the maximum value of the cross-correlation

function is in fact the optimal lag for the raw sweep re-

sponse that results in maximum correlation with the input

sweep signal. In [11], an additional step was performed

to ensure that the onset point was not driven by possible

wall reflections. Since the new measurements were carried

out in an anechoic chamber, this step can be disregarded.
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Figure 3. Resulting HRIRs in the frontal median plane for

subject A (top) and adjusted HRIRs to give maximum cor-

relation to the zero-elevation HRIR (bottom).

Furthermore, that additional step was particularly aimed to

address the case of far-ear HRTFs while the focus of the

new measurements is the median plane.

The impulse response is then calculated by performing an

inverse filtering of the measured sweeps via the following

equation:

h [n] = ℜ
(

F−1
(

F (y [n]) · S−1 [n]
))

, (1)

where F is the DFT function (with the FFT length equal

to the length of the sweep signal), F−1 is the inverse DFT

function, and S−1 [n] is the inverse reference spectrum of

the input sweep signal. A 128-sample half-Hann window

is then applied to each impulse response h[n] with the aim

of removing unwanted early and late reflections occurring

later than approximately 2.5 ms.

It was found that the method is not completely robust

for all elevations as there are some slight onset differences

in the HRIRs for different elevations, which causes some

peaks in the signal to be offset. Since this results in jumps

between adjacent HRTF magnitudes, an additional correc-

tion is introduced. A similar cross-correlation procedure as

described above is performed to adjust the resulting HRIRs

such that they give maximum correlation to the HRIR re-

sulting from elevation φ = 0◦. Figure 3 shows this ad-

justment, where it can be seen that the signals are better

aligned when this supplementary correction is used.

2.3 HRTF feature extraction

As a first step prior to extracting the HRTF features of in-

terest, it is desirable to remove any effects that are not re-

lated to the pinna. A noticeable presence of shoulder re-

flections can be observed in the HRTFs, and therefore a

compensation with the responses of subject Z has been de-

signed. For all available elevations, a recursive IIR digital

filter of the 64th order is fitted to the magnitude response of

subject Z’s HRTFs − displayed in Fig. 4 − using the Yule-

Walker method [14], such that the filtered response would

be approximately flat. Filters are not fitted to the smallest
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Figure 4. HRTF magnitude response of the KEMAR man-

nequin with no left pinna in the frontal median plane.
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Figure 5. HRTF magnitudes of subject A and resulting

notch frequencies.

and largest 5% of frequencies in order to achieve a bet-

ter stability and fit in the frequency range of interest. The

filter is applied to the post-processed HRIRs of all other

subjects. Although shoulder reflection effects can still be

noticed in the majority of the filtered HRIRs due to slight

frequency offsets, their magnitude is significantly reduced.

Subsequently, notch frequencies are extracted using two

alternative methods. The first one is the signal process-

ing algorithm by Raykar et al. [15], which computes the

auto-correlation function of the linear prediction residual

and extracts notch frequencies as the local minima of its

group-delay function falling beyond a fixed threshold. In

the current implementation of the algorithm the linear pre-

dictor (LP) analysis step is skipped as it was found that it

introduces additional notches not visible in the original sig-

nal spectrum. The second one is a more direct algorithm,

where notches are extracted directly from the HRTF spec-

trum. A threshold for notch selection is computed for each

elevation as the mean of the spectrum magnitude between

3 kHz and 16 kHz.

The two methods generally align with regards to the iden-

tified notches. However, there exist outlier cases where one

method is better at finding notches than the other. Hence,

the decision taken is to merge the two notch sets. Finally,
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Figure 6. First notch (N1) track for all available subjects.

the first notch N1 is manually selected as the lowest fre-

quency track starting between 4 and 7 kHz at lower ele-

vations. Since three subjects, M, G and O, did not show a

clear N1 track in this frequency region, they have been dis-

regarded from the following analysis. This results in a total

of 1, 599 data points. Figure 5 shows the selected N1 fre-

quencies for subject A superposed to the HRTF plot, while

Fig. 6 shows the identified N1 tracks for all 17 subjects.

2.4 Pinna feature extraction

The Viking dataset comes with 3D scans of all the custom

pinna samples used in the tests, available as STL files. The

scans were captured at 1 mm resolution with a Creaform

Go!SCAN 20 handheld scanner. It is hypothesized that

the use of 3D data can be an advantage to the traditionally

used anthropometric measurements and/or 2D images of

the pinna when trying to predict notch frequencies. An

improvement to the previously used features can be to add

a depth dimension to the images. Based on this hypothesis,

we generate a dataset of depth maps of the pinnae “viewed”

from the various elevation angles considered in the median

plane.

Depth is calculated using a ray-tracing algorithm with

rays propagating from the source of the sweep signal,

which is considered to be a point at a distance of exactly

1 m from the ear canal entrance along the direction of each

considered elevation angle. The center point of the ear

canal entrance is assumed to be the location of the mi-

crophone diaphragm. The vertices of the pinna mesh are

projected onto the plane passing through the center point,

(x, y, z) = (0, 0, 0), whose normal vector originating from

the center point connects it to the signal source. A rectan-

gular grid of 100 × 100 units is considered on this pro-

jection plane with a fixed size taken as the largest grid

size needed to fully project any pinna mesh at any con-

sidered angle. In order to exclude effects of the rectangu-
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normal vector is oriented towards the signal source), and
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Figure 8. Example of depth maps at various elevations for

subject A.

lar pinna supports, only values above the microphone lo-

cation (z > 0) are included. Projections of points closer

than 1 m are also disregarded in order to consider only

potential reflection locations. Figure 7 shows a resulting

depth map for subject A at elevation φ = −30◦. The depth

map is illustrated as a colored surface plot on the projection

plane, with the colorbar indicating the depth of intersection

points.

Furthermore, Fig. 8 shows various depth maps for subject

A. Depth values are normalized with respect to the maxi-
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mum depth recorded for all subjects. Values correspond-

ing to no intersection or where the intersection is smaller

than the distance to the source (1 m) are set to zero. This

results in non-zero values of the depth map only in cor-

respondence with surfaces which can produce reflections

contributing to possible destructive interference and there-

fore the presence of notches in HRTFs.

2.5 Regression model

Depth maps, together with the recorded N1 frequencies for

all subjects can now be used as a basis for a regression

model aiming to predict the N1 frequencies in HRTFs. For

subjects where N1 frequencies are observed (17 total sub-

jects) the 100× 100 depth map at each elevation φ acts as

the set of input variables for calculating N1(φ), for a total

of 10, 000 features.

For the sake of comparison against the results of previ-

ous studies, in this work we chose to use a multiple linear

regression model. The assumptions for applying linear re-

gression using an ordinary least squares estimator were di-

rectly checked on the available data, revealing that the rela-

tion between depth features and notch frequency is not lin-

ear, that features are highly multicollinear, and that resid-

uals are heteroscedastic. As a consequence, we apply a

principal component analysis (PCA) to our data and use

the first 256 components (explaining approximately 98%

of the total variance in the data) as the set of predictor vari-

ables. The new set of variables fulfils all the assumptions

for linear regression except for homoscedasticity of resid-

uals; this has no big impact on the results as long as no

statistical inferences are conducted [16].

In order to maximize the available data for training, a

leave-one-out cross-validation at subject level is carried

out. This means, for example, that when evaluating the re-

gression model for test subject A the training is performed

on the 16 other subjects. This implies that no test subject

appears in the training set. However, as subjects have a dif-

ferent number of recorded N1 frequencies, the split ratio

varies in the cross-validation. The used metrics for evalu-

ating the multiple regression model are the classical R2 of

the fit and the mean absolute error (MAE), calculated as

MAE =
1

n

n
∑

j=1

|yj − ŷj | (2)

where n is the number of observations for the test sub-

ject, yj is the ground-truth frequency value, and ŷj is the

predicted value. The latter metric was preferred over root-

mean-square error because it provides an intuitive repre-

sentation of the average residual, and because it is robust

to outliers and large errors.

The considered HRTF dataset has a high median-plane

resolution, which is of course an advantage when it comes

to identifying the progression of notch frequencies along

elevation. However, due to the fact that N1 tends to only

be present at lower elevations [17], training the regression

model on depth maps associated with the entire elevation

range is inappropriate. From Fig. 6 it can be seen that only

4 subjects have values above 45◦ elevation. Another as-

pect to be noticed is that at the lowest elevation angles, up

M0 M1

Subject MAE R2 MAE R2

A 519.19 0.94 228.94 0.96

B 365.53 0.24 − −
C 877.29 0.76 727.90 0.62

D 600.85 0.33 666.68 0.58

E 941.45 0.87 461.87 0.89

F 594.41 0.84 532.25 0.89

H 285.78 0.54 305.89 0.82

I 1352.90 0.16 779.15 0.75

J 1263.95 0.93 877.25 0.95

K 274.64 0.91 135.64 0.00

L 566.15 0.74 134.66 0.81

N 996.41 0.27 437.83 0.62

P 421.69 0.42 414.49 0.09

Q 1136.40 0.72 791.34 0.70

R 593.30 0.59 687.54 0.72

S 206.11 0.74 382.34 0.61

KEMAR 660.91 0.75 68.13 0.61

mean 685.70 0.63 476.99 0.66

std 351.70 0.26 258.58 0.27

weighted mean 733.97 0.68 531.89 0.74

Table 1. Mean absolute error (in Hz) and R2 of predicted

versus measured N1 frequencies for the two considered

multiple linear regression models M0 and M1, divided per

test subject.

to about −50◦, notch tracks for all subjects appear quite

flat. Including this data in the learning model may be prob-

lematic, as the depth maps in that range change consider-

ably but their target values do not. As this may pollute the

model, which we name M1, we decided to concentrate on

learning N1 frequencies within the interval φ ∈ [−45, 45]◦

and disregard all other elevation values. The chosen in-

terval also allows comparison with the results of a pre-

vious work which considered prediction of N1 frequen-

cies from anthropometric measurements in the same el-

evation range [10]. Furthermore, a model M0 is trained

on the entire available dataset, i.e. elevation interval φ ∈
[−80, 90]◦, to highlight the aforementioned shortcomings.

3. RESULTS

Table 1 shows the results of the two considered multiple

linear regression models. The MAE and R2 for each sub-

ject are given as a consequence of the leave-one-out cross-

validation method, as well as the mean and standard devi-

ation of the individual metrics. Since some subjects record

N1 frequencies at more elevations than others, we also in-

clude a weighted mean of the two metrics, where the value

for each subject is weighted with the number of predicted

data points.

This effectively calculates the overall performance of the

regression model by equally considering all individual data

points and is a more comparable measure to the results

of [10] where an overall MAE of 607 Hz for the test data

was found, as opposed to the 532 Hz MAE found for mod-
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Figure 9. Measured and predicted (with model M1) N1 tracks for four test subjects.

el M1. This moderate improvement can be attributed to

the inclusion of 3D information in the form of depth maps

used as input in the current regression model, as opposed

to the features used in the previous work [10] which were

based on both generic and elevation-dependent anthropo-

metric measurements from the CIPIC database. This re-

sult takes on further significance considering the low num-

ber of available training subjects in this study (16, because

of no N1 points for subject B in the [−45, 45]◦ elevation

range), and also corroborates the choice of using an HRTF

dataset based on highly controlled and repeatable measure-

ments [11].

When comparing the results for models M0 and M1, we

observe worse performances in M0. The same trend is seen

when looking at the MAE and R2 metrics for the majority

of individual subjects. As expected, the reason why M1

outperforms M0 is related both to the low variation at sub-

ject level in notch frequency values for low elevations, and

to the general lack of notch points for high elevation val-

ues.

Another approach to evaluating the models is to consider

the perceptual threshold of discrimination of two spectral

notches in the high-frequency range. Previous literature in-

dicates that differences of around 10% of the lower notch

frequency are needed to distinguish between the two, inde-

pendent of notch bandwidth [18]. Therefore it is possible

to determine the percentage of predictions in the valida-

tion set that fall within this range. The same trend seen in

the previous evaluation is again present: model M0 scores

a percentage of 54.78%, while there is considerable im-

provement for M1 which scores 71.27%, also improving

the 61.2% score reported in [10].

It must be noted that although the evaluations presented

here show a certain degree of accuracy, the progression of

N1 frequencies from the regression models does not look

as smooth as in the measurements. Figure 9 shows that

even for cases where prediction is accurate, like for sub-

jects A and H, it seems that a second-order polynomial fit

to the predicted data points would be more suitable. In

other cases (e.g. subject Q), while the N1 trend along el-

evation looks correctly reproduced, a considerable offset

of almost 1 kHz can be noticed. Finally, despite the low

number of data points available for the KEMAR subject,

the reconstruction of its N1 track with model M1 is nearly

perfect.

4. CONCLUSIONS

The work described in this paper is based on a recently

collected dataset of HRTF measurements carried out on

a KEMAR mannequin with interchangeable pinnae, for

which 3D scans of the used pinna models are available.

An approach for using 3D data to predict the frequency

progression of the first pinna notch N1 in frontal median-

plane HRTFs is proposed. The method uses information

learned from the data-set in order to build a multiple linear

regression model that could hopefully generalize outside

of the dataset. While results clearly show that 3D features

and HRTF features are related, the accuracy of prediction

could be further improved. This might be done by includ-

ing additional training data, by using more complex (pos-

sibly non-linear) regression models, or by performing fea-

ture selection. For instance, a machine learning approach

such as random forest regression would be an appropriate

solution, since it has no strict prerequisite as opposed to

linear regression. There is, however, progress in terms of

including 3D morphological information as opposed to the

classical anthropometric features, as shown by comparison

of the current results with the regression model previously

used in [10].

While this paper focuses on N1 estimation, more HRTF

features need to be estimated from morphological user data

in order to build a perceptually convincing individualized

HRTF set. Future work will address the estimation of high-

er frequency notches in HRTFs, whose identification is

complicated by higher noise and ambiguity. Models for

a wider spatial range will also be considered. Ultimately,

the broader goal of the project is an accurate tuning of low-

order structural HRTF models [19,20] and HRTF selection

methods [21,22] based on morphological data [23]. Appli-

cations of these methods are expected to range from travel

aids for the visually impaired to entertainment and rehabil-

itation systems [24, 25].
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